Mesenchymal Stem Cells Induce Directional Migration of Invasive Breast Cancer Cells through TGF-β

نویسندگان

  • Kathleen M. McAndrews
  • Daniel J. McGrail
  • Nithin Ravikumar
  • Michelle R. Dawson
چکیده

Mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment and influence tumor progression; however, how MSCs induce the invasion of cancer cells is not completely understood. Here, we used a 3D coculture model to determine how MSCs affect the migration of invasive breast cancer cells. Coculture with MSCs increases the elongation, directional migration, and traction generation of breast cancer cells. MSC-induced directional migration directly correlates with traction generation and is mediated by transforming growth factor β (TGF-β) and the migratory proteins rho-associated kinase, focal adhesion kinase, and matrix metalloproteinases. Treatment with MSC conditioned media or recombinant TGF-β1 elicits a similar migration response to coculture. Taken together, this work suggests TGF-β is secreted by MSCs, leading to force-dependent directional migration of invasive breast cancer cells. These pathways may be potential targets for blocking cancer cell invasion and subsequent metastasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway.

Disulfiram (DSF), an anti-alcoholism drug, has been reported as an inhibitor of NF-κB. NF-κB is involved in epithelial-mesenchymal transition (EMT) and self-renewal of breast cancer stem cells (CSCs). In this study, we treated MCF-7 and MDA-MB-231 breast cancer cells with TGF-β to induce EMT and cancer stem-like features and studied whether DSF can reverse this process. We found that DSF inhibi...

متن کامل

Assay of Tgf-β And B-Fgf on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model

Purpose: Effects of TGF-b and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells In Wound Healing in a Murine Model.Materials and Methods: Peripheral blood mesenchymal stem cells (PBMSCs) and bone marrow stem cells (BMSCs) cultured in media with transforming growth factor-beta (TGF-b) and basic fibroblast growth factor (b-FGF). Stem cells labeled with...

متن کامل

Comparison of TGF-β and Nitric oxide production by adipose-derived mesenchymal stem cells between healthy pregnant and preeclamptic women

Background: Preeclampsia is one of the most common complications of pregnancy that occurs after the 20th weeks of pregnancy.The pathophysiology of this disease is not exactly known. Transforming Growth Factor-beta (TGF-β) and Nitric Oxide (NO) are thekey regulatory factors secreted by Mesenchymal stem Cells (MSCs). Objectives: The aim of the present study was to evaluate the TGF-β and NO secret...

متن کامل

Characterization of Spontaneous and TGF-β-Induced Cell Motility of Primary Human Normal and Neoplastic Mammary Cells In Vitro Using Novel Real-Time Technology

The clinical complications derived from metastatic disease are responsible for the majority of all breast cancer related deaths. Since cell migration and invasion are a prerequisite for metastasis their assessment in patient cancer cells in vitro may have prognostic value for the tumor's metastatic capacity. We employed real-time cell analysis (RTCA) on the xCELLigence DP system to determine in...

متن کامل

TGF-β-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion.

In cancer progression, carcinoma cells gain invasive behavior through a loss of epithelial characteristics and acquisition of mesenchymal properties, a process that can lead to epithelial-mesenchymal transition (EMT). TGF-β is a potent inducer of EMT, and increased TGF-β signaling in cancer cells is thought to drive cancer-associated EMT. Here, we examine the physiological requirement for mTOR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015